UNDERSTANDING INSULATION RESISTANCE TESTING

MAY 14, 2025

Copyright © 2023 Chauvin Arnoux ®, Inc.

d.b.a. AEMC[®] Instruments

PRESENTER: GREGG WONG

Technical Trainer Manager AEMC[®] Instruments

- Degree in Electrical Technology and Engineering
- NICET certified
- CTT+ Certified Technical Trainer
- 8+ years of former field service experience
- Professional Member of the Lightning Protection Institute
- Completed over 80+ seminars and webinars on Electrical Test and Measurement
- Developed and deployed training for Google, Stanford University, the US Navy, 3M, and others

AEMC[®] INSTRUMENTS HEADQUARTERS

- Administration
- R&D
- Engineering
- Manufacturing
- Calibration Lab
- Marketing and Sales Support

15 Faraday Drive Dover, NH 03820 www.aemc.com

Tech Support 800-343-1391 x351

GLOBAL PROFILE

- Established in 1893 in Paris, France
- Began operation in the USA in 1976
- Over 1000 employees worldwide
- 7 manufacturing locations

4 in France (1893) 1 in Italy (1975) 1 *in USA* (1976) (*Dover, NH*)

1 in Shanghai (2000)

10 Subsidiaries

Portable and laboratory electrical test & measurement instruments

CHAUVIN ARNOUX HISTORIQUE

CHAUVIN ARNOUX HISTORIQUE

The CA 6411 & CA 6413 Earth Clamps introduce a new concept: rapid control of interconnected earth loops.

1994

Innovation with the **True InRush**[®], for measuring starting current, and outputs from *PEL 100 recorders* and the *smallest field oscilloscope: [the HandScope.*]

2012

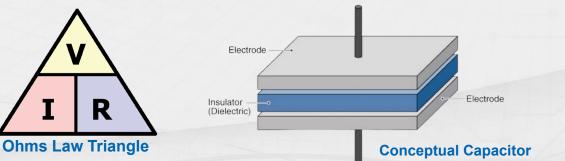
2021

Launched a compact, affordable, and user-friendly power and energy logger the **PEL 52.** The smaller PEL is geared toward the residential and light commercial applications. Introduced the Class A **Model 8345 PowerPad® IV,** an advanced power quality analyzer capable of accurately measuring, logging and reporting harmonics, transients, and other power quality concerns.

2023

PRODUCT GROUPS

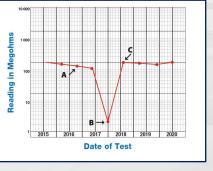
- Ground / Earth Resistance Testers
- Micro-Ohmmeters
- Megohmmeters / Insulation Testers
- Power Quality Analyzers, Meters & Loggers
- Data Loggers
- Environmental Testers
- Digital Multimeters
- Clamp-On Meters
- Cable Testers


- Oscilloscopes
- DC Power Supplies
- Decade Boxes
- Current Measurement Probes
- Electrical Test Tools
- Transformer Ratiometers
- Infrared Thermography

AGENDA – INSULATION TESTING MOTORS

Definitions & Basic Concepts *Resistance Testing & Insulation Basics*

Motorstatol



Instruments & Testing Methods

Functionality of megohmmeters & methods

Applying IR Testing to Motors Basics & Comprehensive IR Measurements

Trend Graph

Testing Plans & Maintenance Strategies

Adding IR testing to a Maintenance Plan

REFERENCES USED IN THIS PRESENTATION

- 1. ANSI NETA ATS (2017) & MTS (2015)
- 2. IEEE 43 Recommended Practice for Testing Insulation Resistance of Electric Machinery
- 3. IEEE 62.2 Diagnostic Field Testing of Electrical Power Apparatus Machinery
- Paul Gill Electrical Power Equipment Maintenance and Testing 2nd edition

GOALS FOR THIS SEMINAR

Basic understanding of the principles

- Insulation / Dielectrics
- Insulation testing theory
- Motor insulation components
- Resistance testing methods

Mastery

- IR Test instruments Megohmmeters 1 kV range
- Quantifying insulation qualities with resistance measurements—accurately
- Test methods Ir, resistance profiling, and ratio tests (DAR, PI)

My goals as your instructor

- Improve your electrical testing knowledge!
- Bring awareness to the S-R-S-C around insulation testing
- Equip you with the knowledge to improve, qualify, or create an IR testing plan for your facility

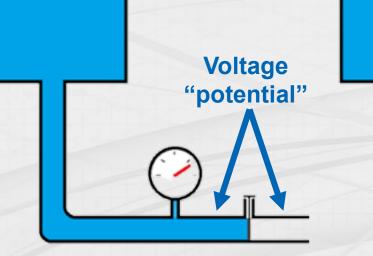
MEM

20 VA max

G

Section 1: Electrical Resistance Testing Basics & Dielectric Theory

Understanding Insulation Testing


INSULATION RESISTANCE

- **IEEE 43-2000 defines insulation resistance as:**
- Insulation Resistance (IR_t) "The capability of the electrical insulation of a winding to resist <u>direct current</u>"
- Resistance is <u>not</u> impedance!

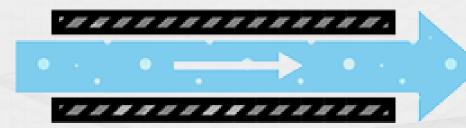
VOLTAGE AND CURRENT

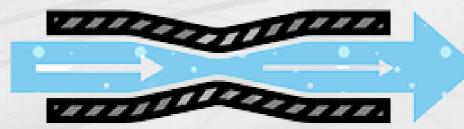
Pressure (Voltage) No Current Pressure (Voltage) And Current

0 Volts

Current

Voltage: The pressure from an electrical circuit's power source that *pushes* charged electrons through a conducting loop.


Symbols Used: V, E, or U.


Current: The *rate* at which electrons flow past a point in a complete electrical circuit.

Symbol Used: I

RESISTANCE BASICS

Resistance: A measure of the opposition to current flow in an electrical circuit.

Symbols Used: R, Ω

Resistance (R): The property of a circuit or element that determines, for a given current, the rate at which electrical energy is converted to heat.

CIRCUIT BASICS

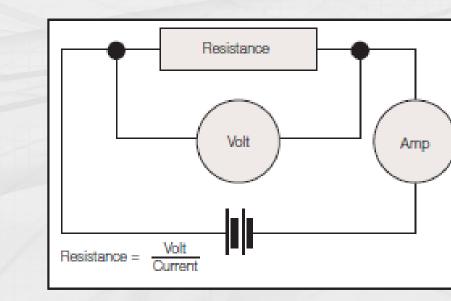
Current is measured in amps (A, mA) and represents the rate of electron flow in a circuit.

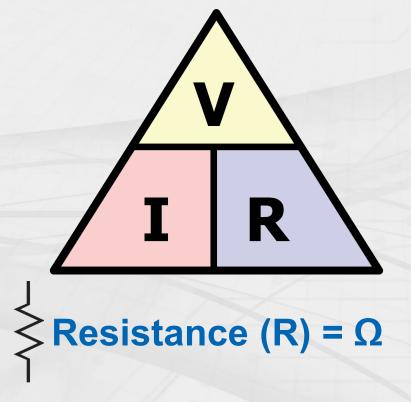
Resistance, measured in ohms (Ω), defines the ability of a material to conduct an electrical charge.

+ | -

V or E: Voltage is the <u>POTENTIAL</u> for CURRENT to flow from one point to another.

A voltage must be created first.




OHMS LAW

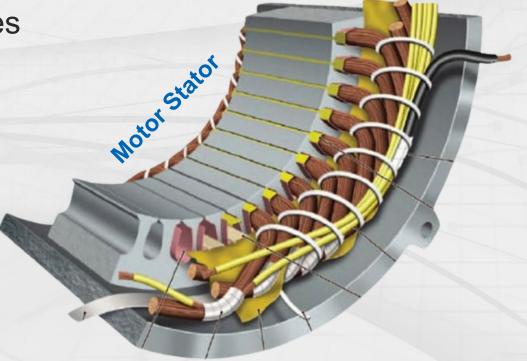
Resistance (R) = Voltage (E) / Current (I)

 1Ω

- 1. APPLY TEST CURRENT through a sample
- 2. MEASURE VOLTAGE across the sample under test
- 3. CALCULATE RESISTANCE of the sample

Resistance (R): The property of a circuit or element that determines, for a given current, the rate at which electrical energy is converted to heat.

WHAT IS A DIELECTRIC? (INSULATION)


Di-electric: Having the property of transmitting electric force without conduction.

Insulating: To separate from conducting bodies by means of nonconductors to present the transfer of electricity.

Three Primary Properties

- 1. High resistance to the flow of electrons
- 2. High strength against electrical stress
- 3. Heat-conducting properties

Purpose = Guide charge

INSULATOR MATERIALS

U

Solids

- Paper
 Rubber / PVC / Nylon
- 3. Mica / Teflon
- 4. Thermoplastics
- 5. Silica / Glass

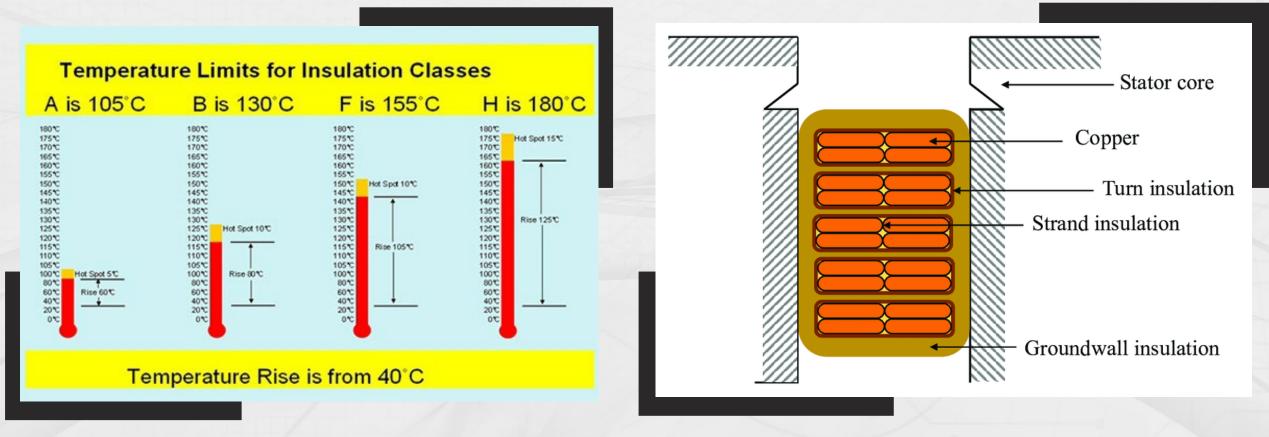
Liquids

Mineral Oils
 Hydrocarbons

Gases

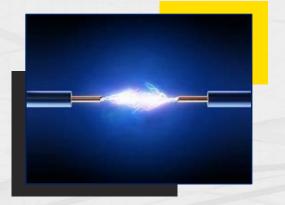
- 1. SF6
- 2. Nitrogen
- 3. Dry Air

Enamel coated windings


Nylon / PVC Insulator

Impregnated Varnish

NEMA INSULATION RATINGS - STATORS



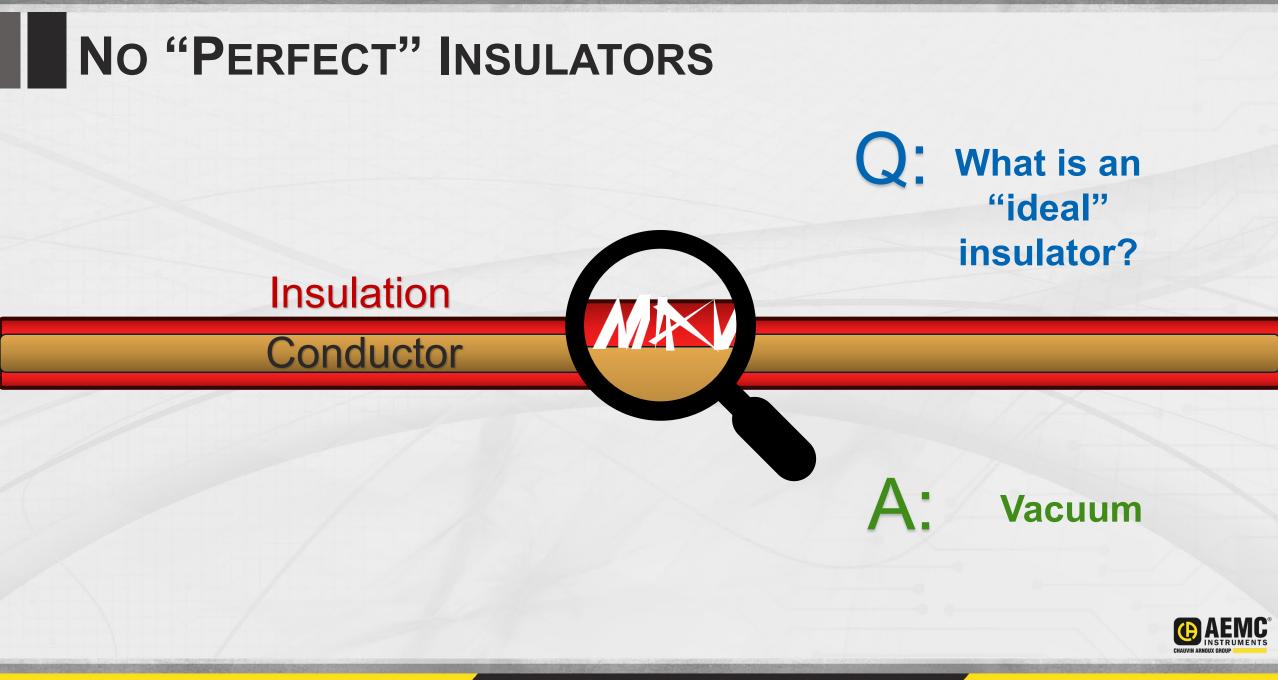
Referred to as the "ground wall"

WHAT CAUSES INSULATION TO FAIL

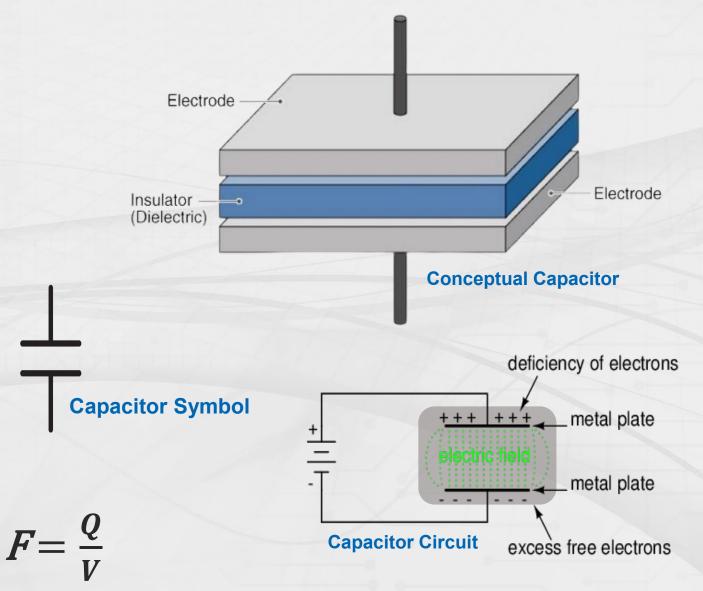
Five basic initiators for insulation breakdown

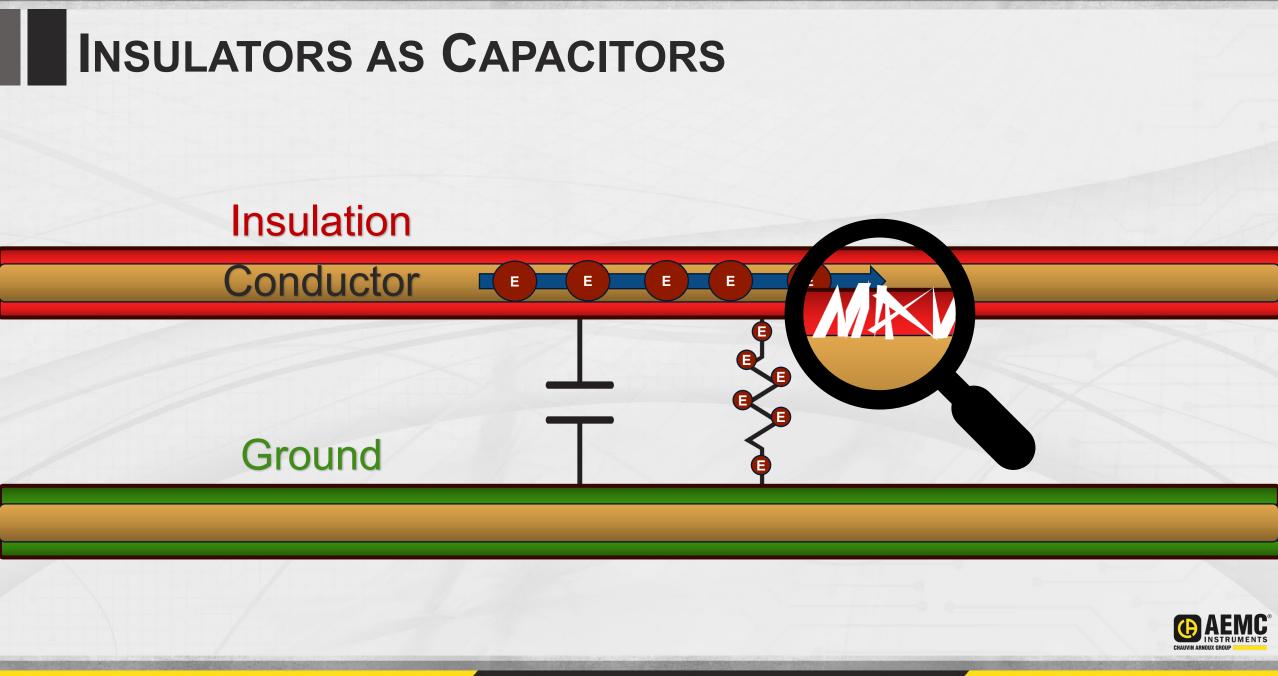
Electrical stress

Chemical stress


Mechanical stress

Thermal stress


Environmental contamination



CAPACITORS

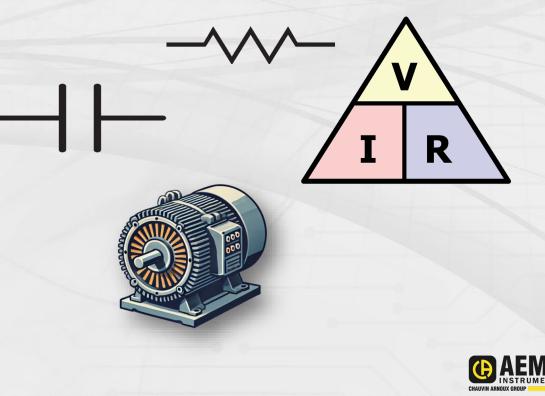
- 1. Stores an **electric field** when voltage is applied to one plate
- 2. Purpose-built capacitors are used to regulate voltage
- 3. "Accidental" capacitors create leakage currents, and interference, and can hold a charge when deenergized
- 4. Measured in farads

DIELECTRIC DEFINITIONS

Dielectric constant: is known as specific inductive capacitance, or permittivity. The dielectric constant of any medium or material is defined as the ratio of the capacitance of a given configuration of electrodes with the medium as a dielectric, to the capacitance of the same configuration with a vacuum (or air) as the dielectric between the electrodes.

Dielectric strength: of a material is the potential gradient (voltage) at which breakdown (electrical failure) occurs and is a function of the material's thickness and its electrical properties.

Dielectric absorption: occurs in dielectrics whereby positive and negative charges are separated to respective polarity when a DC voltage is applied to the dielectric. This phenomenon is time-dependent and usually manifests itself as a gradually decreasing current with time after the application of DC voltage.


Dielectric Constant of Insulating Materials			
Vacuum	1.0	Fiber	2.5-5.0
Air	1.0	Glass	5.4-9-9
Paper	2-2.6	Mica	2.5-7.7
Rubber	2-3.5	Wood	2.5-7.7
Oil	2.2	Porcelain	5.7-6.8
Bakelite	4.5-5.5	Polyethylene	2.3

RECAP: SECTION 1

- Resistance = V/I(A)
- Voltage is the pressure in an IR test
- Current is the flow of an electrical charge in a circuit
- Insulators are dielectrics, they resist, not prevent the conduction of charge
- Insulation Resistance Testing attempts to create a circuit though insulators to quantify the quality of the insulation system ability to resist a charge

"Despite great strides in electrical equipment design in recent years, the weak link in the chain is still the insulation system." – Paul Gill

sмоотн MEM

20 VA max

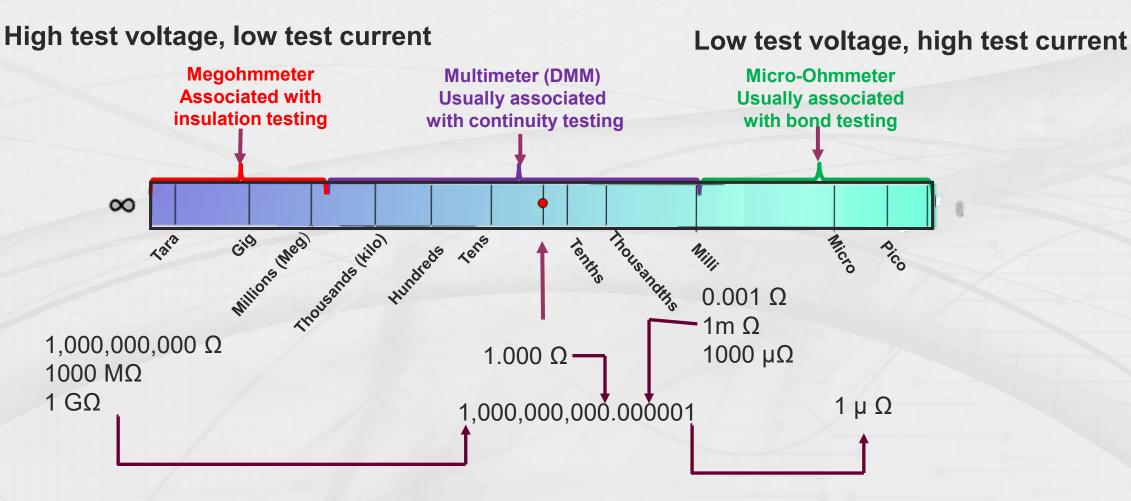
G

1004

Section 2: Megohmmeters & Testing Theory

Understanding Insulation Testing

Copyright © 2023 Chauvin Arnoux [®], Inc. d.b.a. AEMC[®] Instruments


1 kV MEGOHMMETERS: INTRODUCTION

- Megohmmeter: Also known as an insulation resistance (IR) tester, measures the electrical resistance of insulation materials around conductors.
- Megohmmeters are high-range resistance ohmmeters with a built-in direct-current (<u>DC</u>) generator. They can accurately measure very low quantity test currents "leaking" through insulation.
- The instrument creates a high voltage across the insulation, allowing a direct current in the mA range to measure the "Insulation Quality" quantified in resistance in the millions (Meg), billions (Gig), or (Tera) trillions of ohms (Ω).
- 1 kV Megohmmeters can apply up to 1 thousand (Kilo) volts (kV) over a known period of time to continually measure resistance.

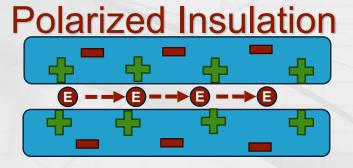
RESISTANCE MEASUREMENT SCALE

WHY DC?

For an Insulation *Resistance* test

Stability

DC is easier to supply, regulate, and accurately measure in a portable, lightweight battery-powered package.


Polarization - Capacitance

AC voltage does easily not polarize materials, increasing impedance (resistance) test times.

Sensitivity

DC measurements more accurately detect the presence of contaminants and phase-to-ground failures.

WHY LOW CURRENT?

Megohmmeters Low current – 1 to 6 mA

- Less destructive testing method
- Fast test time
- Portable, low-cost, without sacrificing accuracy – field capable
- Resistance measurement only not a "full picture"

DC / AC – Withstand Tests High current test methods

- Potentially destructive
- Less field-friendly, large and expensive
- Longer test times
- Go / No Go results

IR TESTING ROLE IN MOTOR MAINTENANCE

- Motors are insulated well with materials like mica that have **HIGH** resistivities.
- Motors fail prematurely when foreign materials contaminate them. Dirt, oil, and water have **LOW** resistivity.
- IR Testing using DC is used to detect the premature failure of motors <u>primarily</u> <u>due to contamination.</u>

MEGOHMMETERS: 1 KV CONSIDERATIONS

1. Range: Max value in Ω s that can be measured

How will results be used?

2. Test modes

- Test voltage
- Spot test
- Timed test
- DAR / PI Ratio tests
- Test result plotting / Graphical display

3. Other functions

- Pass / Fail indicator
- Accessories
- Multi-meter features
- Guard terminal

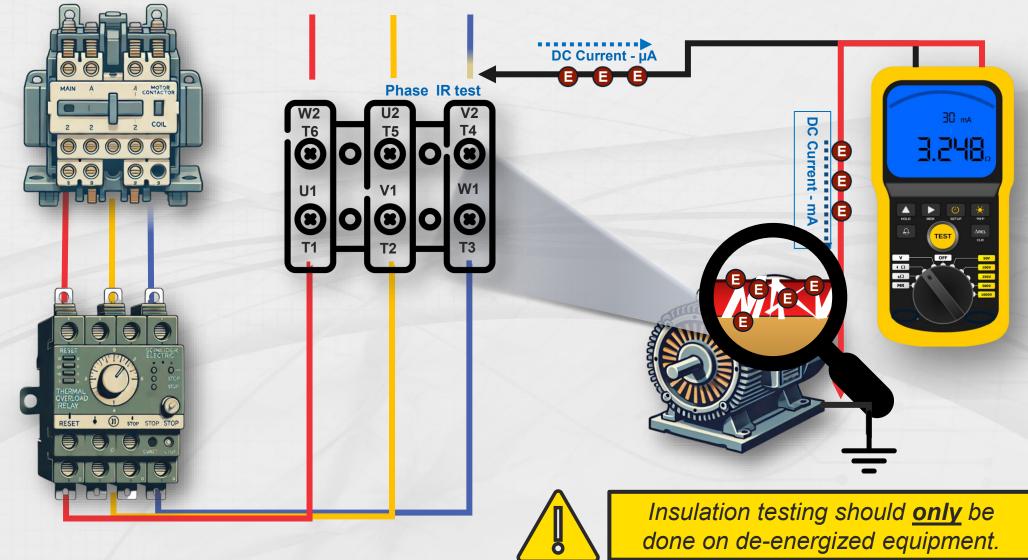
Model 6529 1 kV Megohmmeter & Multimeter

1 kV INSTRUMENT SELECTION

1 kV Insulation Tester

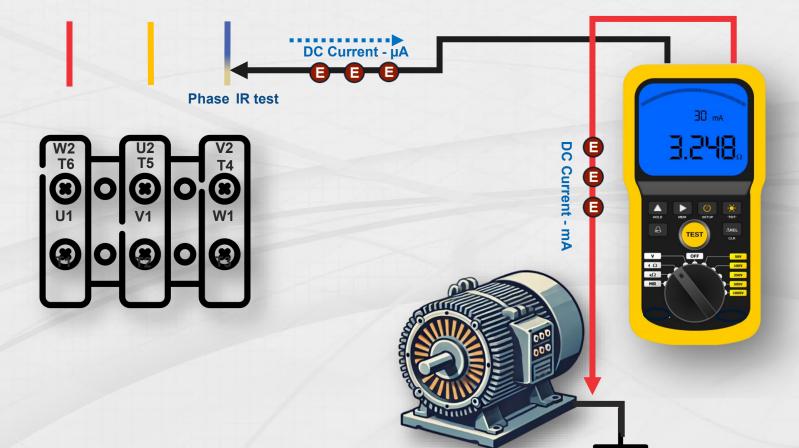
- <u>11 GΩ</u> Max IR Range
- DAR / PI
- Ohmmeter / Voltmeter
- Timed Test

Model 6529 \$350.00

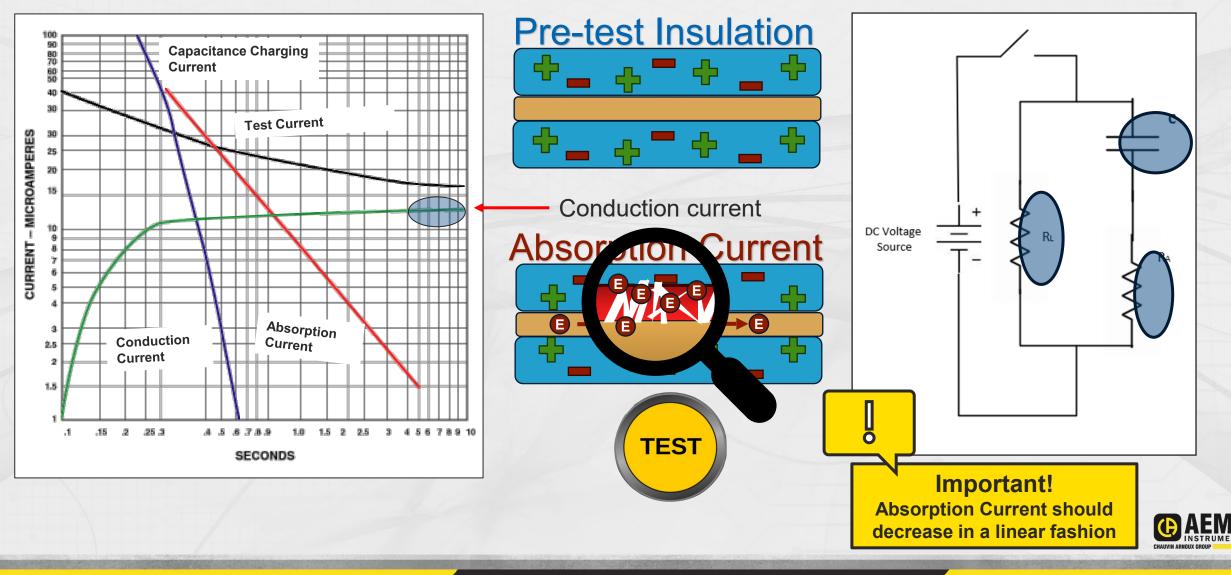

Model 6526 **\$945.00**

1 kV Insulation and Multi-function tester

- 200 G Ω Max IR Range
- DAR / PI
- Timed Test
- 1300 Measurement Storage
- Bluetooth & DataView[®]



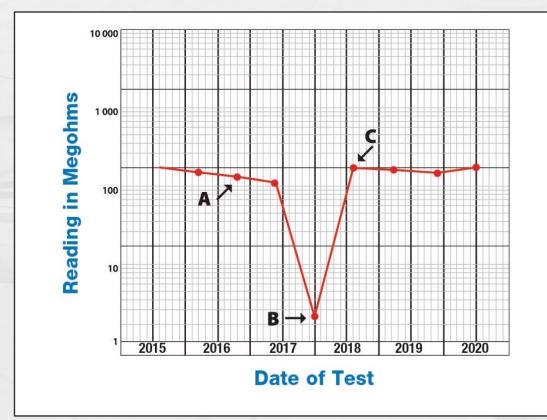
MEGOHMMETERS: PRINCIPAL CONCEPT


POLARITY FOR IR TESTING.....

IEEE 43-2013 5.3 "Insulation resistance tests are conducted with a negative polarity to accommodate for the phenomenon of electroendosmosis."

TIME REQUIREMENT FOR INSULATION TESTING

TEST TYPES: SHORT SPOT TESTING


30 to 60 s Timed Tests

Advantages

- Simplest option
- Short time 30 s to1 min
- Quick "go/no-go" test

Disadvantages

- Inaccurate results
 - Must adjust for temperature & humidity
- 1 IR value only
- Machine (windings) size may not allow for full conducting current to be established
- Shorter tests increase the margin of error between technicians

TEMPERATURE CORRECTION

As the temperature **rises**, insulators lose **dielectric strength**

Resistance should be corrected for **operating temperature (104 °F)**

Options

- Sample stator temp, if probe is installed
- Run motor for 10 minutes with no mechanical load, deenergize, discharge, test
- Correct for ambient
- Temperature on cold motor (1 hour out of service)

Model 6526 1 kV Megohmmeter & Multimeter

TEMPERATURE CORRECTION FOR IR TESTING - MOTORS - 104 °F

Solid Insulation Winding Tem	Solid Insulation Winding Temperature - Correction to 104 °F					
Winding Temp (°F)	Correction Factor					
14	0.1					
23	0.13					
32	0.16					
41	0.2					
50	0.25					
59	0.31					
68	0.4					
77	0.5					
86	0.63					
95	0.79	Available as				
104	1	Available as				
113	1.26	a hand-out				
122	1.59	a mana out				
131	2					
140	2.52					
149	3.17					
158	4					
167	5.04					
176	6.35					
185	8					
194	10.08					
203	12.7					
212	16					
221	20.16					
230	25.4					

TEST TYPES: INSULATION RESISTANCE PROFILING (IR_P)

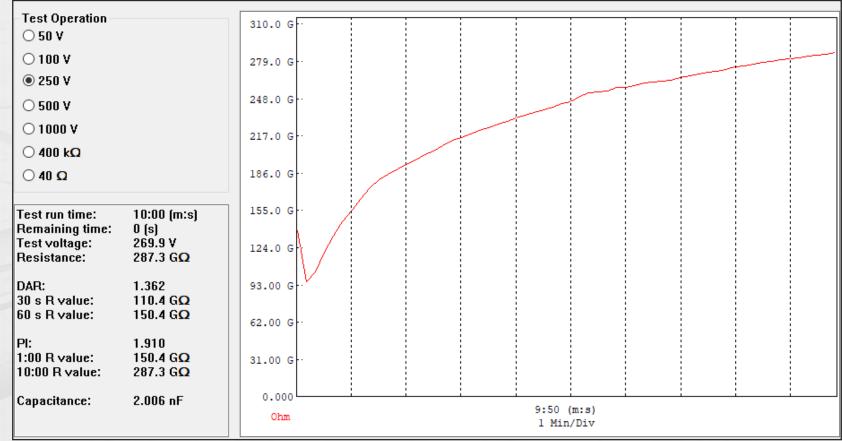
5 to 10 Minute Timed Tests

(Resistance Profiling)

Advantages

- Most comprehensive method
- IR_p Resistance Profiling
- Plot multiple values for a single IR test
- Best for maintenance trending over time
- Reveals the majority of detectable problems

Disadvantages


- Less reliant on humidity and temp*
 Below 50 °F and above 85 °F should be adjusted*
- Longer test time
- More data points
- Reliant on technicians unless plotted by an instrument

*Assumes temperatures fluctuate—if trending and motors stay in a controlled temperature environment, this step may be skipped.

230.0 M	·· · · · · · · · · · · · · · · · · · ·	540.0
207.0 M		486.0
184.0 M		432.0
161.0 M		378.0
138.0 M		324.0
115.0 M		270.0
92.00 M		216.0
69.00 M		162.0
46.00 M		108.0
23.00 M		54.00
0.000		0.000
Ω	1:00 (m:s) 10 Sec/Div	V

TEST TYPES: INSULATION RESISTANCE PROFILING

IEEE 43 – 2013 Annex B. "…Another variation is to record the insulation resistance every minute and discontinue the test when a **stable** (<u>three consecutive readings</u>) *IR* has been measured."

INSULATION RESISTANCE RESULTS

Interpreting Results IEEE-43-2013 Machines rated < 1 kV built after 1970...

$IR_{1min} = 5 M\Omega$

- IEEE acknowledges that these values may be too low
- Preference on trending data
- Temperature compensation

Better option

- Acceptance test Record value
- Maintenance test Trend against previous values
- Major deviations = possible failure

Minimum Insulation Resistance	TEST SPECIMEN
R1 min = kV+1	For most windings made before about 1970, all field windings, and others not described below
R1 min = 100	For most dc armature and ac windings built after about 1970 (form wound coils)
R1 min = 5	For most machines with random-wound stator coils and form-wound coils rated below 1kV
Notes	is the recommended minimum inculation

1 - IR 1 min is the recommended minimum insulation resistance, in megohms, at 40 °C entire machine winding 2 - kV is the rated machine terminal to terminal voltage, in rms kV

TEST TYPES: RATIO TESTS – DAR

DAR – Dielectric Absorption Ratio For use on machines 200 h.p. | 150 kW or less

DAR Concept

- "Poor" insulation
 Absorption current is inconsistent and/or does not decrease Resistance remains relatively stable
- "Good" insulation
 Absorption current decreases over time

Advantages

- Easy operation Pre-set instrument mode
- Pre-set "good/bad" limits
- Mostly independent of temp/humidity

Disadvantages

- Not comprehensive Single data point
- Smaller machines
- Outdated

DAR: $\frac{60 \ Seconds}{30 \ Seconds}$

DAR Values - 1 m / 30 s

Value	State of the Insulation
Less than 1.25	Inadequate
1.25 - <1.6	Acceptable
Greater than 1.6	Excellent

TEST TYPES: RATIO TESTS – P.I.

P.I. – Polarization Index For use on machines 200 h.p. | 150 kW or greater

P.I. Concept

- "Poor" insulation
 Absorption current is inconsistent and/or does not decrease Resistance remains relatively stable
- "Good" insulation
 Absorption current decreases over time

Advantages

- Easy operation Pre-set instrument mode
- Pre-set "good/bad" limits
- Mostly independent of temp/humidity

Disadvantages

- Larger machines only
- Cannot use if IR value is > 5 G Ω within 1st minute of test
- 1 Data point

P.I.: $\frac{10 \text{ Minutes}}{60 \text{ Seconds}}$

PI Values - 10 m / 60 s				
Value	State of the Insulation			
<1	Hazardous			
1-1.5	Bad			
1.5* – 2.0	Doubtful			
2.0	Adequate			
3.0-4.0	Acceptable			
> 4.0	Excellent			

* Class A is Adequate at 1.5

RECAP: SECTION 1-2

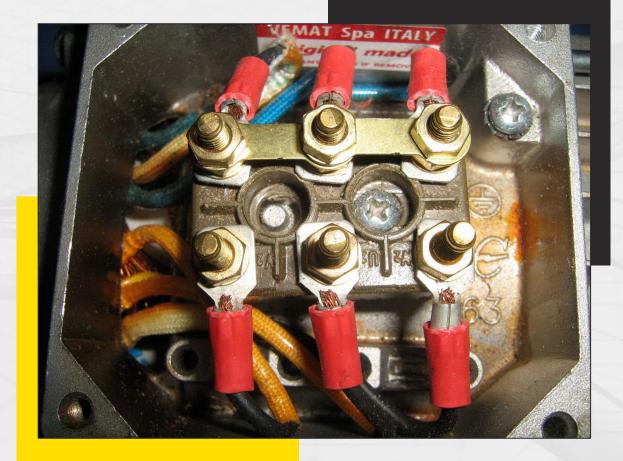
- Megohmmeters apply a HIGH test voltage and LOW test current
- Test voltage = pressure
 remains constant
- Test current = electron flow
 MORE flow less resistance
 = potential insulation failure

Model 6526 1 kV Megohmmeter & Multimeter

RECAP: SECTION 1-2

Two Different Test Options

Timed IR Test


- R_t Short Insulation Resistance
- IR_p Timed Resistance Profile

Ratio Tests

- DAR 200 kW and less
- **PI** 200 kW and more

Temperature Correction

Use chart to correct insulation resistance based on stator temperature

SMOOTH

MEM

20 VA max

G

-

1004

Section 3: Testing Application

Understanding Insulation Testing

Copyright © 2023 Chauvin Arnoux ®, Inc. d.b.a. AEMC® Instruments

TESTING PROCEDURES – SAFETY

This is NOT a SAFETY presentation!

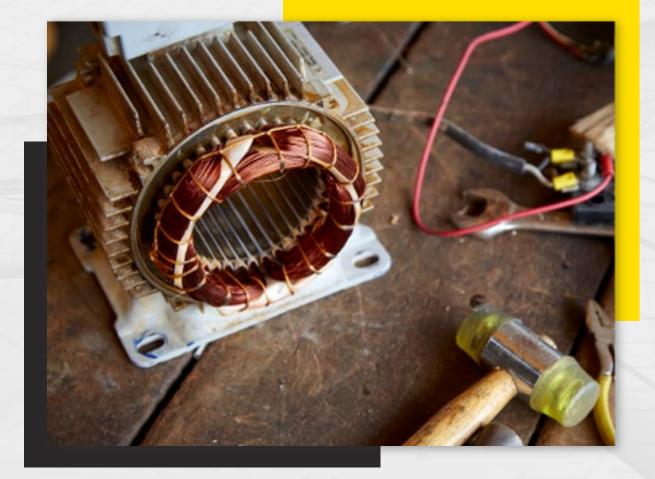
<u>Always</u> follow company-issued safety directives, NFPA 70E guidelines, and common sense when working on or near live voltages. If you're not sure if it's live, **test it**. If you think it is dead, **test it**. If someone told you it's dead, **test it anyway**.

SAFETY AND ACCURACY: TEST SETUP & HYGIENE

Test setup for Machines

1. LOTO / barricade – Safety Protocols

2. Discharge


- Windings should read 0 V
 Verify discharge after each test

3. Isolate motor under test

• VFDs, Cables, heaters, surge arresters, etc. will influence the measurement and could be damaged during testing

4. Low-resistance chassis connection

- Identify low resistance connection to ground
- 5. Clean machine under test
 - Surface contaminants will lower IR
- 6. Temperature / Dew-point
 Ideal testing temp for stator 40 °C Otherwise, correct for temperature

SAFETY AND ACCURACY: TEST SETUP & HYGIENE

Test setup for Instrument

1. Avoid intertwined leads

- Magnets
- Velcro ties

2. Isolate leads

- Choose well-insulated leads! Only use leads approved for insulation testing
- Avoid contact with the ground
- Hands off leads during testing
- Avoid running leads parallel for distances more than 1 ft

3. Use clean leads, probes, and clips• Use rubbing alcohol or appropriate cleaner

AVOID IR TESTING WITH A PROBE!

Introduces additional leakage pathways

Cumuna O

TEST METHOD SELECTION

Why are we testing?

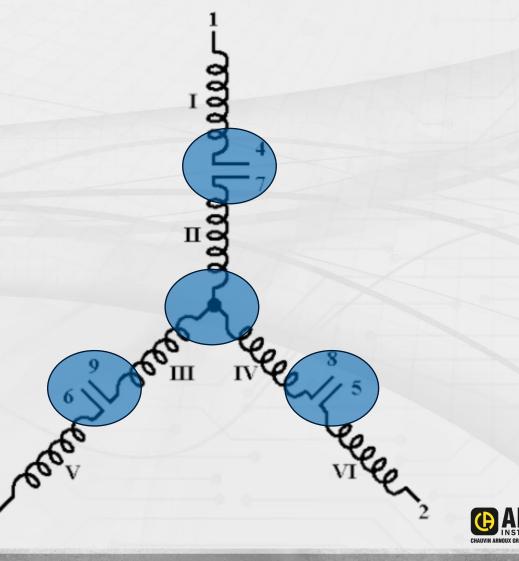
Insulation Resistance Test Types			Test Voltage: Nomi	nal "Rating" Voltage
Test	Voltage	Purpose	3 Phase Machines 1000 V or less	Phase-to-phase Voltage
Timed Step	Pated Voltage v1	Proof / Acceptance Testing	Single Phase Machines	Phase-to-ground Voltage
Voltage Resistance Profiling	Rated Voltage x1 Rated Voltage x2	Comprehensive maintenance	DC Machines	Direct Voltage
On at Ta at		programs		
Spot Test 30 to 60 s	Rated Voltage x1	Maintenance Trending Test		
Resistance Profiling 3 to10 m	Rated Voltage x1	Maintenance Trending Test		
Ratio Test (DAR / PI)	Nominal x1	Maintenance Trending Test		

SUGGESTED TESTING STEPS - QUICK TEST OPTION

Step 1: Machine & Instrument Preparation Terminals stay connected in "HV"

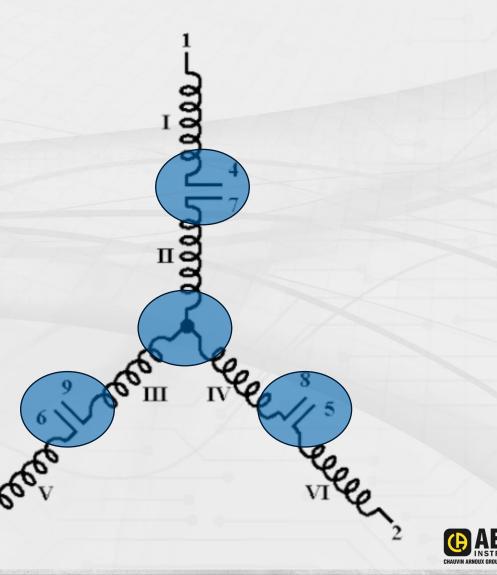
Step 2: Coil resistance check T1,2,3 to ground – (Y 7/8/9 to grnd) – T1-T2-T3, T2-T3

Step 3: Coil-to-Ground Insulation Resistance (IR) test. Short T1-T3


IEEE 43-2013: No recommendation to verify phase-to-phase IR on 2300 V or less

QUICK: 9 LEAD WYE ARRANGEMENT – COIL CHECK

- 7-8-9 are joined internally and not accessible
- 4-7, 5-8 & 6-9 are joined in HV configuration
- Coil resistance check 1,2,3 & 7
 to ground
- Check 1-2-3, 2-3



QUICK: 9 LEAD WYE ARRANGEMENT – IR TEST

- 7-8-9 are joined internally and not accessible
- 4-7, 5-8 & 6-9 are joined in HV configuration
- Short 1-2-3
- IR_t test / 2 = Approximate resistance per winding
- Correct for temp

Check the Instrument for voltage after every IR Test! **DISCHARGE** coils to ground per **IEEE 43** recommendations

SUGGESTED TESTING STEPS – COMPREHENSIVE TEST OPTION "WYE" EXAMPLE – USE WORKSHEET!

Step 1: Machine & Instrument Preparation *(Terminals Open)*

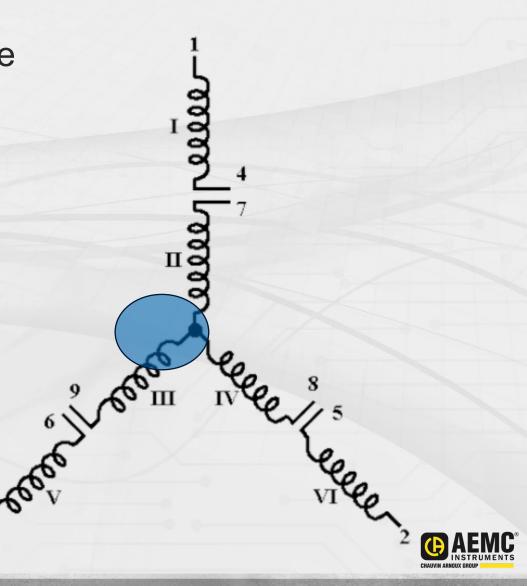
Step 2: Coil resistance check

Step 3: Coil-to-Ground Insulation *Resistance* (*IR*) *test*

IEEE 43-2013: No recommendation to verify phase-to-phase IR on 2300V or less

CHAUVIN ARNO		IENTS					Chauvin	Arnoux≋,	Inc.
	м	lotor Examp	ple Test For	m - 9 Tern	ninal Wye	Comprehe	nsive Test		
						Date:			
Asset:								189	>
Ambient:	Tempatures	5:			Instrume	ent Model:			
Winding:			Calibration Date:						
				Motor Info	rmation				
	Power - (kW	0			Vo	ltage ph-ph	1:		
		kW				V			
			Coil Res	istance	Checks	- Wye			
			Meter in	"Ω" - Verif	y coil resis	tance			
	T1-T2	T1-T3	T2-T3	T1-T4	T2-T5	T3-T6	T7-T8	T7-T9	T8-T
Ω:	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	1
	T1-grnd	T2-grnd	T3-grnd	T7/8/9 - G	rnd				
Ω:	Ω	Ω	Ω Inculat	ion Posi			e should be	open!	
	Insulation	Resistance	Insulat Measurement than 10% of	ents From change) for	stance 1 Ph1,2,3 & 7 3 consecu	ests 7-8-9 to gro tive minute	und until re es	sistance is	similar
	Insulation	Resistance (less n Resistanc	Insulat Measurem than 10% o ce Measure	ents From change) for ments - W	stance 1 Ph1,2,3 & 7 3 consecu	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete	Insulation	Resistance (less n Resistanc Test -	Insulat Measureme than 10% o ce Measure Wye:	ents From I change) for ements - W Tes	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete	Insulation Insulatio T1- gnd	Resistance (less n Resistanc Test - T2-gnd	Insulat Measurement than 10% of ce Measure Wye: T3-gnd	ents From I change) for ments - W Tes T7-gnd	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω:	Insulation Insulatio T1- gnd Ω	Resistance (less n Resistand Test - T2-gnd Ω	Insulat Measurement than 10% of ce Measure Wye: T3-gnd Ω	ents From I change) for ments - W Tes 177-gnd Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω:	Insulation Insulatio T1- gnd Ω	Resistance (less n Resistanc Test - T2-gnd Ω Ω	Insulat Measurem than 10% of ce Measure Wye: T3-gnd Ω Ω	ents From I change) for ments - W Tes T7-gnd Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	similar
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω:	Insulation Insulatio T1- gnd Ω	Resistance (less n Resistand Test - T2-gnd Ω Ω	Insulat Measurement than 10% of ce Measure Wye: T3-gnd Ω Ω	ents From I change) for ements - W Tes T7-gnd Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω: Minute 4 Ω:	Insulation Insulation	Resistance (less n Resistanc Test - T2-gnd Ω Ω Ω	Insulat Measurem than 10% o ce Measure Wye: T3-gnd Ω Ω Ω Ω	ents From I change) for ements - W Tes 177-gnd Ω Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω: Minute 4 Ω: Minute 5 Ω:	Insulation I Insulatio	Resistance (less n Resistanc Test - T2-gnd Ω Ω Ω Ω	Insulat Measurem than 10% c ce Measure Wye: T3-gnd Ω Ω Ω Ω Ω	ents From i change) foi ements - W Te: T7-gnd Ω Ω Ω Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω: Minute 5 Ω: Minute 5 Ω:	Insulation I Insulatio	Resistance (less n Resistanc Test - T2-gnd Ω Ω Ω Ω Ω	Insulat Measurem than 10% c ce Measure Wye: T3-gnd Ω Ω Ω Ω Ω Ω	ents From i change) for rements - W Tes T7-gnd Ω Ω Ω Ω Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω: Minute 4 Ω: Minute 5 Ω:	Insulation I Insulatio	Resistance (less n Resistance T2-gnd Ω Ω Ω Ω Ω Ω	Insulat Measurem than 10% c ce Measure Wye: T3-gnd Ω Ω Ω Ω Ω	ents From i change) foi ements - W Te: T7-gnd Ω Ω Ω Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	
Complete Time Ω: Minute 1 Ω: Minute 2 Ω: Minute 3 Ω: Minute 5 Ω: Minute 5 Ω: Minute 6 Ω:	Insulation Insulation	Resistance (less n Resistance T2-gnd Ω Ω Ω Ω Ω Ω Ω	Insulat Measurem than 10% of ce Measure Wye: T3-gnd Ω Ω Ω Ω Ω Ω Ω	ents From in change) for ments - W Tes 77-gnd Ω Ω Ω Ω Ω Ω	stance 1 Ph1,2,3 & 7 3 consecu lye Wired -	ests 7-8-9 to gro tive minute Open Tern	und until re es	sistance is	

COMPREHENSIVE: 9 LEAD WYE ARRANGEMENT – COIL / IR


7-8-9 are joined internally and not accessible

Coil test: T1-2-3-4-7 | T2-3-5-7 T3-6-7 | T1,2,3,7 - Grnd

Ground T2-3-7 Test T1 - Grnd Repeat for other phases – Include T7-8-9!

Check the Instrument for voltage after every IR Test! **DISCHARGE** coils to ground per **IEEE 43** recommendations

TESTING RESULTS

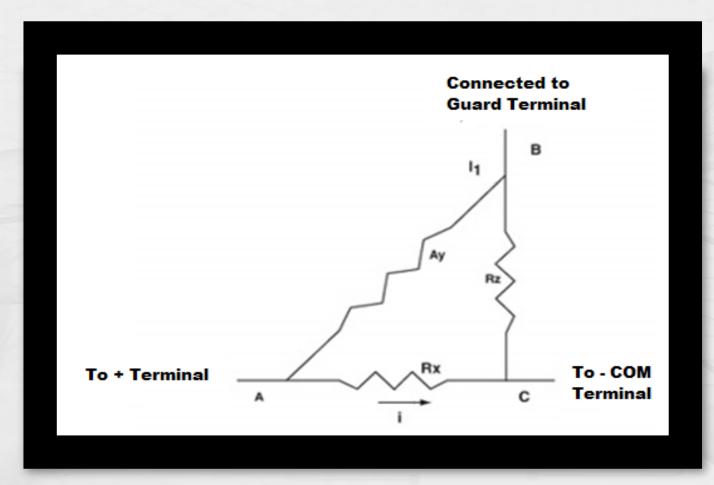
Good IEEE 43-2013

- 1 kV and less rated machines 5 $M\Omega$
- DAR 1.25 or better
- PI 2.0 or better

Better

- New motor $Ir_t = 250 M\Omega$
- 3 Year Maintenance $Ir_t = 224 M\Omega$
- 4 Year Condition $Ir_t = 150 M\Omega$

IR TESTING LIMITATIONS


IEEE 43-2013

- Insulation Resistance of a winding is not directly related to its dielectric strength.
 It is impossible to specify the value at which failure will occur.
- Large windings, slow machines, or machines with commutators.
 May have lower insulation values than recommended. Historical trending is key.
- A single insulation resistance measurement at one voltage does not indicate a potential issue exists.
- Direct Current measurements do not detect internal insulation voids.
 There is an extent to which failures in a DC test can measure insulation breakdown.

TROUBLESHOOTING WITH A GUARD LEAD

- A "Guard" is a 3rd terminal used to better isolate a test
- Not heavily used in motor testing
- However, "guarding out" can be used for advanced troubleshooting

MEGOHMMETER FUNCTION TEST

Lead Continuity

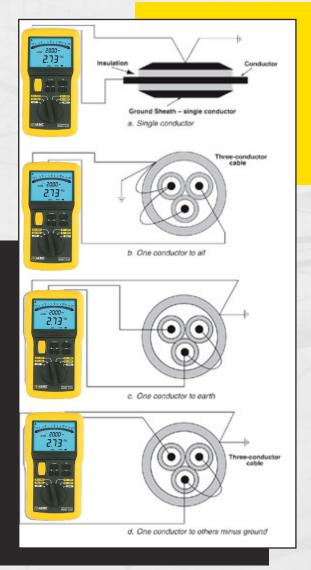
- Continuity setting
- Clip leads together

Megohmmeter function test

- Use against a known resistance
- Use against a multimeter

AEMC® Instruments recommends annual calibration

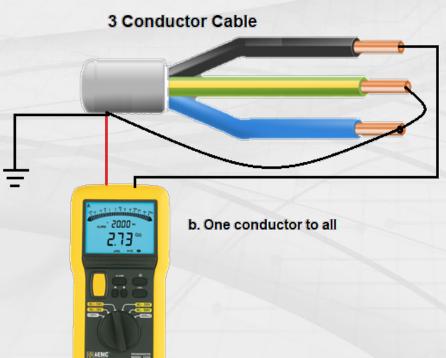
OTHER IR TESTS – 3 PHASE TRANSFORMER



Low voltage winding to ground and high voltage winding to guard

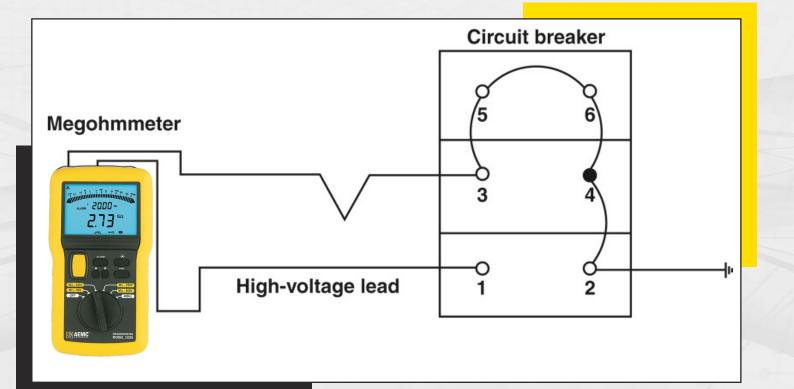
- High voltage windings shorted together
- Guard blue (G) lead connected to high voltage windings
- Low voltage windings shorted together and connected to ground
- Megohmmeter red + lead connected to case
- Megohmmeter black lead connected to the low voltage windings

CABLE TESTING



Single Conductor

a. Conductor to Line (-) terminal and sheath to Earth (+)


Multi-Conductor

- a. Single conductor
- b. One conductor to all
- c. One conductor to earth
- d. One conductor to others
 - minus ground

BREAKER TESTING

Circuit breaker open

SMOOTH

MEM

20 VA max

G

-

100.4

Section 4: Testing Plans

Understanding Insulation Testing

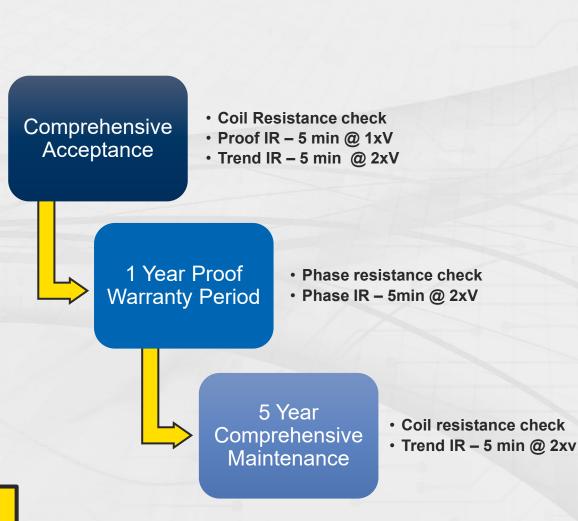
Copyright © 2023 Chauvin Arnoux [®], Inc. d.b.a. AEMC[®] Instruments

ACCURACY IN TRENDING...INSULATION RESISTANCE

Repeatability Points for Trending

- Test Instrument (make, model)
 - Precision
- Test Method & Reporting
 - Standard Operating Procedure

 Test method
 Minimum test time
 Environmental conditions
 - Standardize test reports


Test Specimen

Order of operation

 Clean first, then IR, profile

Decision Makers

Reduce decision fatigue for your technicians!

TESTING INTERVALS: ACCEPTANCE

Acceptance / Proof / Commissioning Testing

- "The systematic process to ensure that electrical power equipment and systems are operational, within applicable standards and manufacturers' tolerances..."
- Completed upon receipt and installation but before start-up starts the "trend"

insulation Resistant	e Acceptance Tests		
Test	Reason		
Nominal Voltage Timed IR Test	Function Test		
<u>Insulation Resistance</u> <u>Profiling with</u> <u>trend plot</u>	Baseline for future maintenance tests		
DAR / PI Ratio with trend plot	Baseline for future maintenance tests		

Inculation Desistance Accontance Tests

TESTING INTERVALS: MAINTENANCE

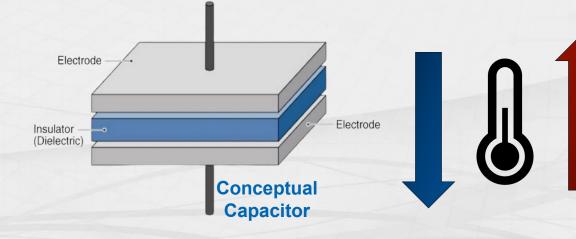
Maintenance / Function Testing

"Evaluate electrical equipment to ensure equipment is both functional and safe. Testing should be compared to previous acceptance and maintenance tests for analysis."

Frequency is based on the organization's maintenance program

- Preventative Maintenance
- Predictive (Condition) Maintenance
- Run-to-failure: Post-mortum

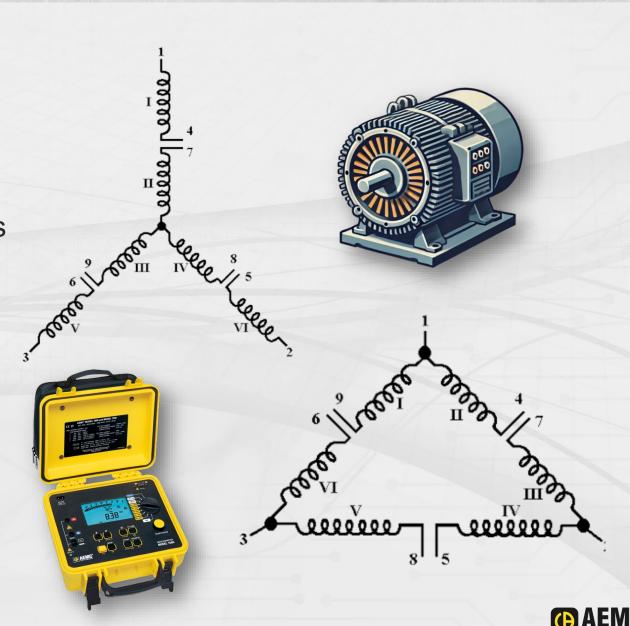
Continues the "**trend**" of data to track insulation performance, determine potential failure modes.


Insulation Resistance Maintenance Test				
Test	Reason			
DAR / PI Ratio	Maintenance Test Good			
Insulation Resistance Profiling with trend plot	Maintenance Test <u>Better</u>			

WRAPPING UP

Insulation Resistance Testing Motors

- Resistance is a quantification of insulation integrity or performance
- Megohmmeters HV current generator, voltage meter and low current measurement tool for measuring insulation resistance
- Do not follow the 2:1 Test : Rated voltage ratio
- Motor and instrument preparation are key to accurate trending results
- Testing plans should be structured ahead of time



20 -

WRAPPING UP

Insulation Resistance Testing

- Test voltage should be applied until the measurement "steadies"
 3-minute minimum for most machines
- **Temperature** has a dramatic effect on insulation performance
- 2 Types of Tests
 - Timed IR
 - Ratio tests
- 2 Approaches
 - Quick
 - Comprehensive

SMOOTH

MEM

V/T

20 VA max

G

-

THANK YOU!

Understanding Insulation Testing

Copyright © 2023 Chauvin Arnoux [®], Inc. d.b.a. AEMC[®] Instruments